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F. Guo,72 J. Guo,72 G. Gutierrez,50 P. Gutierrez,75 A. Haas,70 N.J. Hadley,61 P. Haefner,24 S. Hagopian,49

J. Haley,68 I. Hall,75 R.E. Hall,47 L. Han,6 K. Hanagaki,50 P. Hansson,40 K. Harder,44 A. Harel,71

R. Harrington,63 J.M. Hauptman,57 R. Hauser,65 J. Hays,43 T. Hebbeker,20 D. Hedin,52 J.G. Hegeman,33

J.M. Heinmiller,51 A.P. Heinson,48 U. Heintz,62 C. Hensel,58 K. Herner,72 G. Hesketh,63 M.D. Hildreth,55

R. Hirosky,81 J.D. Hobbs,72 B. Hoeneisen,11 H. Hoeth,25 M. Hohlfeld,21 S.J. Hong,30 R. Hooper,77 S. Hossain,75

P. Houben,33 Y. Hu,72 Z. Hubacek,9 V. Hynek,8 I. Iashvili,69 R. Illingworth,50 A.S. Ito,50 S. Jabeen,62 M. Jaffré,15
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4Instituto de F́ısica Teórica, Universidade Estadual Paulista, São Paulo, Brazil
5University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada,

York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
6University of Science and Technology of China, Hefei, People’s Republic of China

7Universidad de los Andes, Bogotá, Colombia
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We describe a search for the standard model Higgs boson with a mass of 105 GeV/c2 to 145 GeV/c2

in data corresponding to an integrated luminosity of approximately 450 pb−1 collected with the D0
detector at the Fermilab Tevatron pp collider at a center-of-mass energy of 1.96 TeV. The Higgs
boson is required to be produced in association with a Z boson, and the Z boson is required to
decay to either electrons or muons with the Higgs boson decaying to a bb pair. The data are well
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described by the expected background, leading to 95% confidence level cross section upper limits
σ(pp → ZH)×B(H → bb) in the range of 3.1 pb to 4.4 pb.

PACS numbers: 13.85.Ni, 13.85.Qk, 13.85Rm

Over the past two decades, increasingly precise exper-
imental results have repeatedly validated the standard
model (SM) and the relationship between gauge invari-
ance and the embedded coupling strengths. For massive
W and Z bosons, gauge invariance of the Lagrangian is
preserved through the Higgs mechanism, but the Higgs
boson (H) has yet to be observed. The current lower
bound on the mass of the Higgs boson from direct ex-
perimental searches is MH = 114.4 GeV/c2 at the 95%
confidence level [1]. Searches for pp → WH → e(µ)νbb,
pp → WH → WWW ∗, and pp → ZH → ννbb have been
recently reported [2–4]. The CDF collaboration has re-
cently reported results in the pp → WH → `ν channel [5]
and previously reported results in the pp → WH → `ν
and pp → ZH → `+`−bb (` = e, µ) channels with sig-
nificantly smaller data sets [6–8]. This Letter provides
the first results from the D0 experiment of searches for
a Higgs boson produced in association with a Z boson,
which then decays either to an electron pair or to a muon
pair. The Higgs is assumed to decay to a bb pair with a
branching fraction given by the SM. The Z(→ `+`−)H
channels reported in this letter comprise major compo-
nents of the search for a Higgs boson at the Tevatron
collider.

Z bosons are reconstructed and identified through
pairs of isolated electrons or muons with large momen-
tum components transverse to the beam direction (pT ),
having invariant mass consistent with that of the Z bo-
son. Events are required to have exactly two jets iden-
tified as arising from b quarks (b jets). The resulting
data are examined for the presence of a (H → bb̄) sig-
nal in the b-tagged dijet mass distribution. An effi-
cient b-identification algorithm with low misidentification
rate and good dijet mass resolution are essential to en-
hance signal relative to the backgrounds. The analysis
of the dielectron [9] (dimuon [10]) channel is based on
450 ± 27 pb−1 (370 ± 23 pb−1) of data recorded by the
D0 experiment between 2002 and 2004.

The D0 detector [11, 12] has a central-tracking sys-
tem consisting of a silicon microstrip tracker (SMT)
and a central fiber tracker (CFT), both located within
a ≈ 2 T superconducting solenoidal magnet, with de-
signs optimized for tracking and vertexing covering
pseudorapidities |η| < 3 and |η| < 2.5, respectively
(η = − ln[tan(θ/2)], with θ the polar angle relative to
the direction of the proton beam). Central and for-
ward preshower detectors are positioned just outside of
the superconducting coil. A liquid-argon and uranium
calorimeter has a central section (CC) covering pseudo-
rapidities up to |η| ≈ 1.1 and two end calorimeters (EC)
that extend coverage to |η| ≈ 4.2, with all three housed

in separate cryostats [12]. An outer muon system, cover-
ing |η| < 2, consists of a layer of tracking detectors and
scintillation trigger counters in front of 1.8 T toroids,
followed by two similar layers behind the toroids [13].
Luminosity is measured using plastic scintillator arrays
placed in front of the EC cryostats [14].

The primary background to the Higgs signal is the as-
sociated production of a Z boson with jets arising from
gluon radiation, among which Z+bb̄ production is an irre-
ducible background. The other background sources are
tt̄ production, diboson (ZZ and WZ) production, and
events from multijet production that are misidentified
as containing Z bosons. The backgrounds are grouped
into two categories with the first category, called physics
backgrounds, containing events with Z or W bosons aris-
ing from SM processes: inclusive Z + bb̄ production, in-
clusive Z + jj production in which j is a jet without
b flavor, tt̄, ZZ, and WZ events. This background is
estimated from simulation as described below. The sec-
ond category, called instrumental background, contains
those events from multijet production that have two jets
misidentified as isolated electrons or muons which ap-
pear to arise from the Z boson decay. This background
is modeled using control data samples and the procedure
described below.

Physics backgrounds are simulated using the leading
order alpgen [15] and pythia [16] event generators,
with the leading order cteq5l [17] used as parton distri-
bution functions. The decay and fragmentation of heavy
flavor hadrons is done via evtgen [18]. The simulated
events are passed through a detailed D0 detector simula-
tion program based on geant [19] and are reconstructed
using the same software program used to reconstruct the
collider data. The ZH signal, for a range of Higgs masses,
is also simulated using pythia with the same processing
as applied to data. Determination of the instrumental
background and the normalization of the physics back-
grounds are discussed below.

Candidate Z → ee events are selected using a combi-
nation of single-electron triggers. Accepted events must
have two isolated electromagnetic (EM) clusters recon-
structed offline in the calorimeter. Isolation is defined
as I = (E(0.4)

total − E
(0.2)
EM )/E

(0.2)
EM in which E

(0.4)
total is the

total calorimeter energy within ∆R < 0.4 of the elec-
tron direction and E

(0.2)
EM is the energy in the electro-

magnetic portion of the calorimeter within ∆R < 0.2 of
the electron direction. Candidate electrons must satisfy
I < 0.15. Each EM cluster must have pT > 20 GeV/c
and either |ηdet| < 1.1 or 1.5 < |ηdet| < 2.5, where ηdet is
the pseudorapidity measured relative to the center of the
detector, with at least one cluster satisfying |ηdet| < 1.1.



5

In addition, the lateral and longitudinal shower shape of
the energy cluster must be consistent with that expected
of electrons. At least one of the two EM clusters is also
required to have a reconstructed track matching the po-
sition of the EM cluster energy. Events with a dielectron
mass of 75 < Mee < 105 GeV/c2 form the Z boson can-
didate sample in the dielectron channel.

Candidate Z → µ+µ− events are selected using a set
of single-muon triggers. Accepted events must have two
isolated muons reconstructed offline. The muons must
have opposite charge, pT > 15 GeV/c, and |η| < 2.0
with muon trajectories matched to tracks in the central
tracking system (i.e., the SMT and the CFT), where the
central track must contain at least one SMT measure-
ment. In addition, the central tracks are required to have
a distance of closest approach to the interaction vertex
in the transverse plane smaller than 0.25 cm. Muon iso-
lation is based on the sum of the energy measured in the
calorimeter around the muon candidate and the sum of
the pT of tracks within ∆R =

√
(∆φ)2 + (∆η)2 = 0.5 of

the muon candidate normalized by the muon momentum.
The distribution of this variable in background multi-
hadron events is converted to a probability distribution
such that a low probability corresponds to an isolated
muon. The product of the probabilities for both muons
in an event is computed, and the event is retained if the
product is less than 0.02. Accepted Z boson candidates
must have the opening angle of the dimuon system in
the transverse plane (azimuth) of ∆φ > 0.4, and invari-
ant mass 65 GeV/c2 < Mµµ < 115 GeV/c2. The ∆φ
requirement is used to protect against potential residual,
difficult to model background from low mass dimuon pro-
duction in which one of the muons is badly mismeasured.
It is present in the preselection but has essentially no
impact after the dimuon mass requirement. This mass
range differs from that of the dielectrons because of the
difference in resolutions of electron energies and muon
momenta.

After selecting the Z candidate events, we define a
Z+dijet sample which, in addition to satisfying the Z
candidate selection requirements, has at least two jets
in each event. Jets are reconstructed from energy in
calorimeter towers using the Run II cone algorithm with
∆R = 0.5 [20] with towers defined as non-overlapping,
adjacent regions of the calorimeter ∆η ×∆φ = 0.1× 0.1
in size. The transverse momentum of each jet is cor-
rected for multiple pp interactions, calorimeter noise, out-
of-cone showering in the calorimeter, and energy response
of the calorimeter as determined from the transverse
momentum imbalance in photon+jet events [21]. Only
jets that pass standard quality requirements and satisfy
pT > 20 GeV/c and |η| < 2.5 are used in this analy-
sis. The quality requirements are based on the pattern
of energy deposition within a jet and consistency with
the energy deposition measured by the trigger system.

For the Z → ee channel, the normalizations of the

smaller tt, WZ and ZZ backgrounds are computed us-
ing simulated events and next-to-leading-order (NLO)
cross sections. The cross sections were computed using
the mcfm [22] program and the next-to-leading order
cteq6m [23] parton distribution functions. Trigger effi-
ciency, electron identification (ID) efficiency and resolu-
tion correction factors are derived from comparisons of
data control samples and simulated events. The back-
ground contributions from Z + jj, Z + bj and Z + bb
processes are normalized to the observed Z+dijet data
yield reduced by the expected contributions from the
smaller physics and instrumental backgrounds. The rel-
ative fractions of the Z + jj, Z + bj and Z + bb back-
grounds in the Z+dijet sample are determined from the
acceptance and selection efficiencies multiplied by the ra-
tios of the NLO cross sections for these processes again
computed using mcfm with cteq6m parton distribu-
tion functions. For the Z → µ+µ− channel, all physics
backgrounds are determined using simulated events with
NLO cross sections again determined using mcfm and
cteq6m. Trigger efficiency, muon ID efficiency, and res-
olution correction factors are derived from comparison of
data control samples and the simulated events.

Instrumental backgrounds in both channels are deter-
mined by fitting the dilepton invariant mass distributions
to a sum of non-Z and Z boson contributions. The Z
boson lineshape is modeled using a Breit-Wigner distri-
bution convoluted with a Gaussian representing detector
resolution. The non-Z background, consisting of a sum
of events from Drell-Yan production and instrumental
background, is modeled using exponentials. The ratio of
Z boson to non-resonant Drell-Yan production is fixed
by the standard model.

The (two) jets arising from Higgs boson decay should
contain b-flavored quarks, whereas background from
Z+jets has relatively few events with b jets. To im-
prove the signal-to-background ratio, two of the jets in
the events from the Z+dijet sample are required to ex-
hibit properties consistent with those of jets containing
b quarks. The same b-jet identification algorithm [24] is
used for the dielectron and dimuon samples. It is based
on the finite lifetime of b hadrons giving a low probability
that these tracks appear to arise from the primary ver-
tex and considers all central tracks associated with a jet.
A small probability corresponds to jets with tracks with
large impact parameter, as expected in b hadron decays.
The efficiency for tagging a b jet from Higgs decay is
approximately 50%, determined as described in the next
paragraph. The probability of misidentifying a jet arising
from a charm quark as a b jet is roughly 20%. The in-
clusive Z+dijet sample has a cc content of roughly 2.3%.
The probability to misidentify a jet arising from a light
quark (u, d, s) or gluon as a b jet is roughly 4%. This
choice of efficiency and purity optimizes the sensitivity
of the analysis. The relatively large per-jet light-flavor
misidentification rate can be accommodated because two
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FIG. 1: The dijet invariant mass distribution in double–
tagged Z+dijet events. The Higgs signal corresponds to
MH = 115 GeV/c2. (The uncertainties are statistical only.)

tagged jets are required in each event.
For background yields determined from simulated

events, the probability as a function of jet pT and η that
a jet of a given flavor would be identified (tagged) as a
b jet is applied to each jet in an event. The probability
functions are derived from control data samples [25]. For
jets in the simulated events, the flavor is determined from
a priori knowledge of the parton that gives rise to the jet.
The probability of having two b-tagged jets is defined by
convoluting the per-jet probabilities assuming there are
no jet-to-jet correlations introduced by the b-tag require-
ment. The observed number of Z +2 b-jet events and the
predicted background levels are shown in Table I.

The invariant mass of the two b jets in the Z + 2 b jet
sample is shown in Fig. 1. This distribution is searched
for an excess of events. The peak position in the dijet
mass spectrum is expected to be at a lower value than
the hypothetical Higgs mass because the jet energy is
corrected to reflect the energy of particles in the jet cone
without a general correction for the lower b jet response
compared with light jets. If any good muon is within
∆R < 0.5 of the jet, then twice the muon momentum is
added to the jet momentum (after applying the standard
jet correction). This is an approximation to the energy of
both the muon and the accompanying neutrino. The ex-
pected contribution from Higgs boson production shown
in Fig. 1 corresponds to MH = 115 GeV/c2.

Systematic uncertainties for signal and background
arise from a variety of sources, including uncertainties on
the trigger efficiency, on the corrections for differences
between data and simulation for lepton reconstruction
and identification efficiencies, lepton energy resolution,
jet reconstruction efficiencies and energy determination,
b-identification efficiency, uncertainties from theory and
parton distribution functions for cross sections used for
simulated events and uncertainties on the method used

for instrumental background estimates. The luminosity
measurement has an uncertainty of 6.1%. This uncer-
tainty is applied as systematic uncertainty to the back-
ground predictions which are absolutely normalized using
simulation and to the luminosity input to the limit calcu-
lation. The uncertainties from these sources are shown in
Table II. These are evaluated by varying each of the cor-
rections by ±1σ, by comparing different methods (for the
instrumental backgrounds), and by varying the parton
distribution functions among the 20 error sets provided
as part of the cteq6l library. The variations seen for dif-
ferent processes for a given uncertainty arise because of
differences among the various background processes and
because of intrinsic differences in the kinematic spectra
from different Higgs mass hypotheses.

The observed yield is consistent with background pre-
dictions. Upper limits on the ZH production cross sec-
tion are derived at 95% confidence level using the CLs

method [26], a modified frequentist procedure, with a
log-likelihood ratio classifier. The shapes of full dijet
invariant-mass spectra of the signal and background his-
togrammed in 5 GeV/c2 bins are used to produce likeli-
hoods that the data are consistent with the background-
only hypothesis or with a background plus signal hy-
pothesis. Systematic uncertainties are folded into the
likelihoods via Gaussian distribution, with correlations
maintained throughout. The data yield, predicted back-
grounds and expected and observed limits are shown in
Table III for five hypothetical Higgs masses. The limits
are also shown in Fig. 2. The mass window in Table III
is used for illustration. It is centered on the mean of
the reconstructed Higgs mass in simulated ZH events
and has a width of ±1.5σ in which σ is the result of a
Gaussian fit to the reconstructed dijet mass distribution.
The upper bounds differ slightly between the Z → ee and
Z → µ+µ− events because of different resolutions.

In summary, we have carried out a search for associated
ZH production in events having two high-pT electrons or
muons and two jets identified as arising from b quarks.
Consistency is found between data and background pre-
dictions. A 95% confidence level upper limit on the Higgs
boson cross section σ(pp → ZH) × B(H → bb) is set
between 4.4 pb and 3.1 pb for Higgs bosons with mass
between 105 GeV/c2 and 145 GeV/c2, respectively.
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TABLE I: Number of observed and expected background events.

Z+ ≥ 2 jets 2 b tags
Final state Z → ee Z → µ+µ− Z → `+`− Z → ee Z → µ+µ− Z → `+`−

Zbb 9.4 8.3 17.4 2.0 1.3 3.3
Zjj 414 437 851 1.2 2.6 3.8
tt̄ 2.7 9.6 12.3 0.83 3.1 3.9
ZZ + WZ 9.2 21.4 30.6 0.32 0.42 0.74
Instrumental 28.0 16.1 44.1 0.18 0.41 0.59
Total background 463 493 956 4.5 7.8 12.3
Observed events 463 545 1008 5 10 15

TABLE II: Systematic uncertainty in background and signal
predictions given as the fractional uncertainty on the event
totals. The ranges correspond to variations introduced by
different processes (background), the dijet mass window re-
quirement (background and signal) and intrinsic differences in
kinematics arising from different hypothesized Higgs masses
(signal).

Source Background Signal
Lepton ID Efficiencies 11% – 16% 11% – 12%

Lepton Resolution 2% 2%
Jet ID Efficiency 5% – 11% 8%

Jet Energy Reconstruction 10% 7%
b–jet ID Efficiency 10% – 12% 9%

Cross Sections 6% – 19% 7%
Trigger Efficiency 1% 1%

Luminosity 3% 6.1%
Instrumental Background 2% (ee)
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FIG. 2: The expected and observed cross–section limits are
shown as a function of Higgs mass. The cross section based
on the SM is shown for comparison.
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